Выше по каталогу. |
=>
В худшем случае, если не будет применяться оптимизирующий алгоритм, потребуется перебор и сравнение всех возможных фрагментов изображения разного размера. Даже для небольших изображений при учете дискретности мы получим астрономическое число перебираемых вариантов. Причем, даже резкое сужение классов преобразований, например, за счет масштабирования только в определенное количество раз, не дает заметного выигрыша во времени. Кроме того, при этом теряется качество изображения. Подавляющее большинство исследований в области фрактальной компрессии сейчас направлены на уменьшение времени архивации, необходимого для получения качественного изображения. Далее приводятся основные определения и теоремы, на которых базируется фрактальная компрессия. Этот материал более детально и с доказательствами рассматривается в [3] и в [4]. Определение. Преобразование , представимое в виде где a, b, c, d, e, f действительные числа и называется двумерным аффинным преобразованием. Определение. Преобразование , представимое в виде где a, b, c, d, e, f, p, q, r, s, t, u действительные числа и называется трехмерным аффинным преобразованием. Определение. Пусть — преобразование в пространстве Х. Точка такая, что называется неподвижной точкой (аттрактором) преобразования. Определение. Преобразование в метрическом пространстве (Х, d) называется сжимающим, если существует число s: , такое, что Замечание: Формально мы можем использовать любое сжимающее отображение при фрактальной компрессии, но реально используются лишь трехмерные аффинные преобразования с достаточно сильными ограничениями на коэффициенты. Теорема. (О сжимающем преобразовании) Пусть в полном метрическом пространстве (Х, d). Тогда существует в точности одна неподвижная точка этого преобразования, и для любой точки последовательность сходится к . Более общая формулировка этой теоремы гарантирует нам сходимость. Определение. Изображением называется функция S, определенная на единичном квадрате и принимающая значения от 0 до 1 или Пусть трехмерное аффинное преобразование , записано в виде и определено на компактном подмножестве декартова квадрата [0..1]x[0..1]. Тогда оно переведет часть поверхности S в область , расположенную со сдвигом (e,f) и поворотом, заданным матрицей . При этом, если интерпретировать значение S как яркость соответствующих точек, она уменьшится в p раз (преобразование обязано быть сжимающим) и изменится на сдвиг q. Определение. Конечная совокупность W сжимающих трехмерных аффинных преобразований , определенных на областях , таких, что и , называется системой итерируемых функций (IFS). Системе итерируемых функций однозначно сопоставляется неподвижная точка — изображение. Таким образом, процесс компрессии заключается в поиске коэффициентов системы, а процесс декомпрессии — в проведении итераций системы до стабилизации полученного изображения (неподвижной точки IFS). На практике бывает достаточно 7-16 итераций. Области в дальнейшем будут именоваться ранговыми, а области — доменными. Построение алгоритма Как уже стало очевидным из изложенного выше, основной задачей при компрессии фрактальным алгоритмом является нахождение соответствующих аффинных преобразований. В самом общем случае мы можем переводить любые по размеру и форме области изображения, однако в этом случае получается астрономическое число перебираемых вариантов разных фрагментов, которое невозможно обработать на текущий момент даже на суперкомпьютере. В учебном варианте алгоритма, изложенном далее, сделаны следующие ограничения на области:
Например, для файла в градациях серого 256 цветов 512х512 пикселов при размере блока 8 пикселов аффинных преобразований будет 4096 (512/8x512/8). На каждое потребуется 3.5 байта. Следовательно, если исходный файл занимал 262144 (512х512) байт (без учета заголовка), то файл с коэффициентами будет занимать 14336 байт. Коэффициент архивации — 18 раз. При этом мы не учитываем, что файл с коэффициентами тоже может обладать избыточностью и архивироваться методом архивации без потерь, например LZW. Отрицательные стороны предложенных ограничений:
Сам алгоритм упаковки сводится к перебору всех доменных блоков и подбору для каждого соответствующего ему рангового блока. Ниже приводится схема этого алгоритма. for (all range blocks) {
Как видно из приведенного алгоритма, для каждого рангового блока делаем его проверку со всеми возможными доменными блоками (в том числе с прошедшими преобразование симметрии), находим вариант с наименьшей мерой L2 (наименьшим среднеквадратичным отклонением) и сохраняем коэффициенты этого преобразования в файл. Коэффициенты — это (1) координаты найденного блока, (2) число от 0 до 7, характеризующее преобразование симметрии (поворот, отражение блока), и (3) сдвиг по яркости для этой пары блоков. Сдвиг по яркости вычисляется как: , где rij — значения пикселов рангового блока (R), а dij — значения пикселов доменного блока (D). При этом мера считается как: . Мы не вычисляем квадратного корня из L2 меры и не делим ее на n, поскольку данные преобразования монотонны и не помешают нам найти экстремум, однако мы сможем выполнять на две операции меньше для каждого блока. Посчитаем количество операций, необходимых нам для сжатия
изображения в градациях серого 256 цветов 512х512 пикселов при размере
блока 8 пикселов:
Таким образом, нам удалось уменьшить число операций алгоритма компрессии до вполне вычисляемых (пусть и за несколько часов) величин. Схема алгоритма декомпрессии изображений Декомпрессия алгоритма фрактального сжатия чрезвычайно проста. Необходимо провести несколько итераций трехмерных аффинных преобразований, коэффициенты которых были получены на этапе компрессии. В качестве начального может быть взято абсолютно любое изображение (например, абсолютно черное), поскольку соответствующий математический аппарат гарантирует нам сходимость последовательности изображений, получаемых в ходе итераций IFS, к неподвижному изображению (близкому к исходному). Обычно для этого достаточно 16 итераций. Прочитаем из файла коэффициенты всех блоков;
Поскольку мы записывали коэффициенты для блоков Rij (которые, как мы оговорили, в нашем частном случае являются квадратами одинакового размера) последовательно, то получается, что мы последовательно заполняем изображение по квадратам сетки разбиения использованием аффинного преобразования. Как можно подсчитать, количество операций на один пиксел изображения в градациях серого при восстановлении необычайно мало (N операций “+”, 1 операций “* ”, где N — количество итераций, т.е. 7-16). Благодаря этому, декомпрессия изображений для фрактального алгоритма проходит быстрее декомпрессии, например, для алгоритма JPEG, в котором на точку приходится (при оптимальной реализации операций обратного ДКП и квантования) 64 операции “+” и 64 операции “? ” (без учета шагов RLE и кодирования по Хаффману!). При этом для фрактального алгоритма умножение происходит на рациональное число, одно для каждого блока. Это означает, что мы можем, во-первых, использовать целочисленную рациональную арифметику, которая существенно быстрее арифметики с плавающей точкой. Во-вторых, умножение вектора на число — более простая и быстрая операция, часто закладываемая в архитектуру процессора (процессоры SGI, Intel MMX...), чем скалярное произведение двух векторов, необходимое в случае JPEG. Для полноцветного изображения ситуация качественно не изменяется, поскольку перевод в другое цветовое пространство используют оба алгоритма. Оценка потерь и способы их регулирования При кратком изложении упрощенного варианта алгоритма были пропущены многие важные вопросы. Например, что делать, если алгоритм не может подобрать для какого-либо фрагмента изображения подобный ему? Достаточно очевидное решение — разбить этот фрагмент на более мелкие, и попытаться поискать для них. В то же время понятно, что эту процедуру нельзя повторять до бесконечности, иначе количество необходимых преобразований станет так велико, что алгоритм перестанет быть алгоритмом компрессии. Следовательно, мы допускаем потери в какой-то части изображения. Для фрактального алгоритма компрессии, как и для других алгоритмов сжатия с потерями, очень важны механизмы, с помощью которых можно будет регулировать степень сжатия и степень потерь. К настоящему времени разработан достаточно большой набор таких методов. Во-первых, можно ограничить количество аффинных преобразований, заведомо обеспечив степень сжатия не ниже фиксированной величины. Во-вторых, можно потребовать, чтобы в ситуации, когда разница между обрабатываемым фрагментом и наилучшим его приближением будет выше определенного порогового значения, этот фрагмент дробился обязательно (для него обязательно заводится несколько “линз”). В-третьих, можно запретить дробить фрагменты размером меньше, допустим, четырех точек. Изменяя пороговые значения и приоритет этих условий, мы будем очень гибко управлять коэффициентом компрессии изображения в диапазоне от побитового соответствия до любой степени сжатия. Заметим, что эта гибкость будет гораздо выше, чем у ближайшего “конкурента” — алгоритма JPEG. Коэффициенты компрессии: 2-2000 (Задается пользователем). Класс изображений: Полноцветные 24 битные изображения или изображения в градациях серого без резких переходов цветов (фотографии). Желательно, чтобы области большей значимости (для восприятия) были более контрастными и резкими, а области меньшей значимости — неконтрастными и размытыми. Симметричность: 100-100000 Характерные особенности: Может свободно масштабировать изображение при разархивации, увеличивая его в 2-4 раза без появления “лестничного эффекта”. При увеличении степени компрессии появляется “блочный” эффект на границах блоков в изображении. |
--
В первой, как легко догадаться, будет храниться уменьшенная копия изображения. Во второй — усредненные разности пар значений пикселов по горизонтали. В третьей — усредненные разности пар значений пикселов по вертикали. В четвертой — усредненные разности значений пикселов по диагонали. По аналогии с двумерным случаем мы можем повторить наше преобразование и получить вместо первой матрицы 4 матрицы размером 128х128. Повторив наше преобразование в третий раз, мы получим в итоге: 4 матрицы 64х64, 3 матрицы 128х128 и 3 матрицы 256х256. На практике при записи в файл, значениями, получаемыми в последней строке (), обычно пренебрегают (сразу получая выигрыш примерно на треть размера файла — 1- 1/4 - 1/16 - 1/64...). К достоинствам этого алгоритма можно отнести то, что он очень легко позволяет реализовать возможность постепенного “прояв–ления” изображения при передаче изображения по сети. Кроме того, поскольку в начале изображения мы фактически храним его уменьшенную копию, упрощается показ “огрубленного” изображения по заголовку. В отличие от JPEG и фрактального алгоритма данный метод не оперирует блоками, например, 8х8 пикселов. Точнее, мы оперируем блоками 2х2, 4х4, 8х8 и т.д. Однако за счет того, что коэффициенты для этих блоков мы сохраняем независимо, мы можем достаточно легко избежать дробления изображения на “мозаичные” квадраты. Коэффициенты компрессии: 2-200 (Задается пользователем). Класс изображений: Как у фрактального и JPEG. Симметричность: ~1.5 Характерные особенности: Кроме того, при высокой
степени сжатия изображение распадается на отдельные блоки.
|
Заключение
В заключение рассмотрим таблицы, в которых сводятся воедино параметры различных алгоритмов сжатия изображений, рассмотренных нами выше. |
Алгоритм | Особенности изображения, за счет которых происходит сжатие |
RLE | Подряд идущие одинаковые цвета: 2 2 2 2 2 2 15 15 15 |
LZW | Одинаковые подцепочки: 2 3 15 40 2 3 15 40 |
Хаффмана | Разная частота появления цвета: 2 2 3 2 2 4 3 2 2 2 4 |
CCITT-3 | Преобладание белого цвета в изображении, большие области, заполненные одним цветом |
Рекурсивный | Плавные переходы цветов и отсутствие резких границ |
JPEG | Отсутствие резких границ |
Фрактальный | Подобие между элементами изображения |
|
|
|
ориентирован |
|
|
RLE | 32, 2, 0.5 |
|
3,4-х битные |
|
|
LZW | 1000, 4, 5/7 |
|
1-8 битные |
|
|
Хаффмана | 8, 1.5, 1 |
|
8 битные |
|
|
CCITT-3 | 213(3), 5, 0.25 |
|
1-битные |
|
|
JBIG | 2-30 раз |
|
1-битные |
|
|
Lossless JPEG | 2 раза |
|
24-битные, серые |
|
|
JPEG | 2-20 раз |
|
24-битные, серые |
|
|
Рекурсивное сжатие | 2-200 раз |
|
24-битные, серые |
|
|
Фрактальный | 2-2000 раз |
|
24-битные, серые |
|
|
В приведенной таблице отчетливо видны тенденции развития алгоритмов графики последних лет:
Сравните приведенные в этой главе алгоритмы сжатия изображений. |
Алгоритмы cжатия изображений
Содержание
(с) 1999 Лаборатория Компьютерной Графики ВМиК МГУ им. М.В. Ломоносова |